skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ba, Amadou"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Time series behavior of gas consumption is highly irregular, non-stationary, and volatile due to its dependency on the weather, users' habits and lifestyle. This complicates the modeling and forecasting of gas consumption with most of the existing time series modeling techniques, specifically when missing values and outliers are present. To demonstrate and overcome these problems, we investigate two approaches to model the gas consumption, namely Generalized Additive Models (GAM) and Long Short-Term Memory (LSTM). We perform our evaluations on two building datasets from two different continents. We present each selected feature's influence, the tuning parameters, and the characteristics of the gas consumption on their forecasting abilities. We compare the performances of GAM and LSTM with other state-of-the-art forecasting approaches. We show that LSTM outperforms GAM and other existing approaches, however, GAM provides better interpretable results for building management systems (BMS). 
    more » « less